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We study numerically the dynamics, in two dimensions, of phase separation in ternary mixtures with dipolar
interactions which lead to the formation of modulated phases. We distinguish three different modulated phases:
a hexagonal phase of droplets, a lamellar phase, and a hexagonal phase of bubbles. Inside the crystal structures
an additional phase separation occurs “coloring” the texture. The dynamics in the droplet phase mixes the two
kinds of droplets of different composition. The lamellar phase does not evolve toward parallel lamellae, and the
phase separation inside the channels proceeds until they reach a grain boundary. The hexagonal bubble phase
is never formed due to the phase separation that forms an interface of bubbles which blocks the contact
between the two phases. In its place we find an unsuspected lamellar phase.
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I. INTRODUCTION

There has been an intense research activity in the prob-
lems that arise when studying systems subjected to a rapid
quench[1]. Interest has been focused on problems that in-
volve only one order parameter. When the order parameter is
scalar we can distinguish two types of systems: simple fluids
and fluids with competing interactions. In simple fluids, an
initially homogeneous binary mixture that is quenched into a
two-phase region phase separates starting to form droplets of
the minority phase, which grow in size and number until the
volume fraction occupied by the droplets attains its equilib-
rium value. In the late stages of the separation the larger
droplets grow at the expense of the smaller ones. This Ost-
wald ripening follows a universal growth law driven by sur-
face tension. Lifshitz and Slyozov[2] have developed the
phenomenology of this growth in which the average domain
sizeR scales with timet asR=At1/3; this has been confirmed
experimentally in two-dimensional systems[3,4]. Even when
the system is more complex and contains three components,
with the possibility of three-phase equilibrium, droplets of
two different phases grow, when quenched from a uniform
phase, which at late times follow the Lifshitz-Slyozov
growth law [5].

When in addition to the surface tension, due to short-
ranged attractive interactions, there are also long-ranged re-
pulsive interactions present(as is the case of Langmuir
monolayers of polar molecules), undulating phases become
stabilized[6]. The problem has been approached from two
different view points. McConnell[7] studied single isolated
domains and has developed an effective interface free energy
for molecular films in the water-air interface where the long-
ranged repulsive interactions are dipolar interactions among
the single amphiphilic molecules. This free energy contains
surface and electric terms which in the case of an isolated
circular domain of radiusR has the form

F = 2pRy2Sln
e2d

4R
+ lD , s1d

wherey is the dipole density in the monolayer,l is the line
tension, andd is a short distance cutoff length. Equation(1)

has a minimum whenReq=se3d /4dfel/q2
g so that, in this

case, domain coarsening is suppressed by the dipolar repul-
sion. From a different point of view, Andelman[6] and Sagui
and Desai[8] have analyzed a free-energy density with
short-ranged attractive interactions and long-ranged nonlocal
repulsive interactions. Solving the Euler-Lagrange equations
in restricted symmetries(lamellar and hexagonal) they ob-
tained a phase diagram which contains five different phases:
a uniform gas phase, a droplet hexagonal phase, a lamellar
phase, a bubble hexagonal phase, and a dense liquid uniform
phase at different concentrations of polar molecules. Sagui
and Desai studied the time evolution of these systems
through Langevin simulations when the system is quenched,
into the droplet phase, and found that after an initial shape
transition into the hexagonal phase the system forms modu-
lated patterns broken up by topological defects which anneal
away as the system orders. In near critical quenches and in a
closely related system, Boyer and Viñals[9] have shown that
transient lamellar configurations do not achieve long-ranged
orientational order but rather evolve into glassy configura-
tions with very slow dynamics. Here we present the results
for the time evolution of a model whose free energy contains
two coupled order parameters with long-ranged interaction
terms that involve only one order parameter. The result is a
competition between modulation and phase separation due to
excess free energy at interfaces with line tension that is not
compensated by long-ranged repulsive interactions, and the
formation of new glassy metastable states that prevent the
system from achieving equilibrium. There are several regions
of interest in the phase diagram of the model and we present
a full account of its dynamical properties as we keep the
temperature of the quench constant and vary the concentra-
tion in the initial state. In Sec. I we present the model, its
phase diagram, and the linear analysis to find the regions of
instability. In Sec. II we present our numerical results for the
time evolution of the model in several regions of the phase
diagram and in Sec. III we present our concluding remarks.

II. THE MODEL

Our model is a three-component lattice model with both
short-ranged and long-ranged interactions in the mean-field

PHYSICAL REVIEW E 69, 061504(2004)

1539-3755/2004/69(6)/061504(8)/$22.50 ©2004 The American Physical Society69 061504-1



approximation. Letui
a be the occupation number of speciesa

at sitei, then the free energyF is:

F = o
i,a

kTui
aln ui

a +
1

2 o
i,j ;a,b

Va,bsr i,jdui
auj

b, s2d

where T is the temperature andVa,bsr i,jd is the interaction
potential. We consider a fully occupied lattice so that
oa=1

3 ui
a=1. The interaction potential is attractive for nearest-

neighbor sites, zero for second nearest-neighbor sites, and
repulsive for third nearest-neighbor ones, withVa,bsr i,jd
,nanb / r i,j

3 which corresponds to dipolar interactions with
dipolar momentna for speciesa. Since the lattice is fully
occupied there are three independent interaction parameters
for the short-ranged interactions, and we use the notation in
Ref. [10] for them. For a square lattice this interaction term
is

1

4o
i,j

aui
2uj

3 + bui
3uj

1 + cui
1uj

2

where the sum overj is over the four first neighbors ofi. We
also assumea+b+c=1 which sets the temperature and dipo-
lar moments scale. In addition, we useb=a, n1=n2, andn3

=0 so that the mixture is symmetric. This leaves us with
three dimensionless parameters: the temperaturekT, the in-
teraction parameterc, and the dipolar momentn. In this work
we choosec=0.285,kT=0.08, andn=0.2. At this tempera-
ture the mixture shows, whenn=0, a triple point for a wide
range of concentrations in the composition triangle[5]. With
nÞ0 this grand potential describes a Langmuir monolayer
with two different segregating polar molecules in the air-
water interface.

The Euler-Lagrange equations,dF /dui
a=ma, for the two

independent occupation numbersui
1 and ui

2 may be cast in
the mean-field form

ui
a =

e−syi
a−mad/kT

1 + o
b=1

2

e−syi
b−mbd/kT

, s3d

whereyi
a is the functional derivative of the interaction term

in F that is calculated by means of Fourier transforms andma

is the chemical potential for speciesa. The Euler-Lagrange
equations were solved by successive iterations with a global
error ø10−8 and m1=m2 (where we expect multiple phase
equilibria) starting with different initial configurations with
uniform, lamellar, and hexagonal symmetries in a lattice of
size 1002. We also find it convenient to minimize the grand
potential V=F−oi m1ui

1−m2ui
2 subject to constant global

compositionNa and use

Na = o
i

ui
a = ema/kTo

i

e−yi
a/kT

1 + o
b=1

2

e−syi
b−mbd/kT

s4d

to adjust the chemical potentials at each step of the iteration
in Eq. (3). The model has many minima and with different
concentrations and with the same chemical potentials. Cal-

culating the grand potential for each one of them, we find
that those with low concentrations ofu1 or u2 are the most
stable ones. We then calculate the grand potentialV as a
function of m1=m2 for different symmetries and locate the
first-order phase transitions between phases of unlike sym-
metries. In Fig. 1 the resulting phase diagram is shown. At
small concentrations of polar molecules, at the top of the
concentration triangle, we find only uniform states. As we
increase the chemical potentials of species 1 and 2 we find a
first-order phase transition where the stable state has hexago-
nal symmetry with droplets rich in polar molecules withui

1

=ui
2. The region of immiscibility in the composition triangle

generated by this first-order transition is marked by the letter
a in the figure. As we continue increasingm1 andm2 we find
a point (point b in the figure) where there is a second-order
phase transition. The order parameter for this transition is
ui

1−ui
2 and the composition of the droplets in these hexago-

nal phases is rich in either the first or the second component
of the mixture. Increasingm1 andm2 we enter into the region
marked by I in the figure. There we have hexagonal phases
of colored droplets. Since the background regions for both
types of droplets are the same, there is no excess free energy
for mixing the two types of droplets, and region I is a con-
tinuous region where the number of droplets of different
types depend on concentration. On the right and the left sides
of this region we find only droplets of onecolor which are in
equilibrium with each other. At larger values ofm1 and m2

we find a first-order phase transition into a region of lamellar
phases. The letterc in the figure marks the gap in composi-
tion at this first-order transition. This is followed by a region
(region II of Fig. 1) where stripes rich in component 1(2)
alternate with stripes rich in component 3; again the stripes
can alternate in any order with lamellae rich in component 3

FIG. 1. Phase diagram for the three-component mixture. Italic
lettersa, c, d, ande mark immiscibility gaps for first-order phase
transitions, the pointb marks a second-order phase transition where
the droplet phases segregate. In region I the stable phases are hex-
agonal droplet phases with a general appearance shown in inset I. In
region II there are lamellar phases as in the inset II. In region III we
obtain two-phase equilibria between two hexagonal phases with an
interface of bubbles as seen in the inset marked by III. In the insets
white regions are rich in componentu3 and black and gray regions
are rich in the symmetric componentsu1 and u2. Points represent
concentrationsu1=u2=0.18, u1=u2=0.27, u1=u2=0.33, u1=u2

=0.382, andu1=u2=0.45 where we have studied the dynamics.
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always between lamellae of component 1 or 2. As in the
previous case the states at the right and the left sides of
region II are lamellar phases of component 1 in 3 or compo-
nent 2 in 3, which due to symmetry are in equilibrium. At a
larger value ofm1=m2 we find a first-order phase transition
into a region of hexagonal phases, with an immiscible gap
marked by the letterd. At the right and the left sides of
region III of Fig. 1, there is equilibrium between two bubble
hexagonal phases. In one of them the background liquid is
rich in component 1 while in the other the bubbles reside in
a sea rich in component 2. To see the nature of the interface
formed when we put these two phases in contact, we solved
Eq. (3) with condition (4). The complex interface made of
bubbles is shown in the inset III of Fig. 1. Note that the form
of the interface is not circular or straight suggesting that
there is no excess free energy associated with it. Finally,
regione of the diagram is the immiscibility gap that leads to
region IV where we find two-phase equilibria between two
uniform phases; one rich in component 1 and the other rich
in component 2 at the right and the left sides of region IV.

It is interesting to analyze the behavior of the stability
matrix near uniform states withui

1=ui
2=u; its eigenvalues for

a lattice vectork are of the form

v1 =
kT

u
+

kT

1 − 2u
+ V1,1skd + V1,2skd s5d

and

v2 =
kT

u
+ V1,1skd − V1,2skd. s6d

v1 corresponds to fluctuations withDu1=Du2 and has a
minimum at a wave vectork1=s0,1.07d, andv2 corresponds
to fluctuations withDu1=−Du2 with a minimum at a wave
vectork2=s0,0d. In Fig. 2v1 andv2 at the valuesk1 andk2

respectively, are plotted as functions ofu. There we see that
uniform states become unstable to fluctuations withDu1

=Du2 at k1=s0,1.07d for values of u in the range
0.11,u,0.38 and to fluctuations withDu1=−Du2 at k2
=s0,0d for 0.28,u,0.5.

The time evolution of the system, after a quench from a
uniform phase, is described by the equations

dui
a

dt
= o

j

dV

duj
a − 4

dV

dui
a s7d

for a system with conserved order parameter. In Eq.(7) the
sum over j is over the first neighbors ofi. Linear analysis
shows that fluctuations of the formdu=e−vteik·r are solutions
of the kinetic equations withv=k2vi, wherevi are the two
eigenvalues of the stability matrix in Eqs.(5) and (6).

III. NUMERICAL RESULTS

When studying the dynamics of the system, we used sev-
eral initial conditions withui

a=u0+Dui
a, whereDui

a is a fluc-
tuation with zero mean, the average compositionu0 for com-
ponents 1 and 2 being the same. The evolution equations
were solved by a simple Euler method with a time stepDt
=0.006.

Figure 3 shows typical configurations after 75 000 and
150 000 iterations foru0=0.18, inside region I. Linear analy-
sis shows that the unstable fluctuations are concentration
fluctuations withDui

1=Dui
2. Following the quench the system

forms a complex pattern of interconnected domains. After
around 30 000 iterations, the system already shows a short-
ranged liquidlike hexagonal structure of dense droplets with
ui

1=ui
2 and ui

1+ui
2=0.9. At this density, fluctuations with

Dui
1=−Dui

2 become unstable and the droplets start to decom-
pose into droplets rich in component 1 or 2. Since the line
tension between the dense droplets and the gas is larger than
that of the decomposed droplets withui

1=ui
2, these grow in

size. In Fig. 4(a) the appearance of the pattern after 1.5
3106 iterations is shown. We have analyzed the evolution of
the underlaying hexagonal structure using Voronoi and trian-
gular representations and followed the evolution of the num-
ber of sites,nz, with coordinationz. We find that, very soon,
there are only sites withz=5,6, and 7. Thedefects withz
=5 and 7 pair and evolve very much in the same way as
Sagui and Desai[8] have described; throughT1 andT2 pro-

FIG. 2. The two most unstable eigenvalues of the stability ma-
trix as functions of concentration in the symmetric region of the
phase diagram.

FIG. 3. Evolution of the system foru0=0.18, inside region I,
after (a) 75 000 and(b) 150 000 iterations. The tones of gray rep-
resent values of the parameter 1−ui

1−0.5ui
2.
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cesses forming boundaries between the different hexagonal
grains in this polcrystalline structure. There is however a
difference; the average number,n=sn5+n7d / sn5+n6+n7d, of
defects decreases with a growth law that seems to be slower
than that found by Sagui and Desai andn~ tb with b. 1

4. We
attribute this behavior to the fact that not all the droplets
segregate; at very late times we still see droplets with con-
centrationsu1=u2, and since these are smaller, they tend to
pin defects with coordinationz=5. In Fig. 4(b) this behavior
is shown. After 1.53106 the structure is nearly stationary
and when we use the state shown in Fig. 4(b) as the initial
iteration for the solution of the Euler-Lagrange equation(3),
the resulting solution is very close to the initial configura-
tion. There are three causes for the freezing of the liquidlike
state: first there are finite size effects where the periodic
boundary conditions do not match the wavelength of the
structure and impose strain in the lattice, second the quench
temperature is very deep, and third the unsegregated droplets
pin defects with coordinationz=5. At early times the system
orders both positionally and orientationally and in Fig. 5(a)
we can see the measured time evolution(averaged over four
runs) of the number of defects and the orientational order
parameterf6= uok ou ei6uSu3,u3sk,udu, whereSu3,u3sk,ud is the
normalized structure factor of the third component of the
mixture. Its evolution is also jammed by finite size effects
and the pinning of defects so that the structure is still liquid-
like. In Fig. 5(b), clearly the two-step evolution of the system
by plotting the behavior of the time evolution of the grand
potential is seen; here the first rise in the lns−Vd curve cor-
responds to the formation of nonsegregated droplets while
the second corresponds to their segregation. There is a purely
kinetic effect in the structure that induces an additional cor-
relation; droplets rich in component 1 are surrounded, on
average, by four droplets rich in component 2 and two drop-
lets rich in component 1 because growing droplets feed from
its neighbors and a growing fluctuation withui

1−ui
2.0 in-

duces fluctuations withui
1−ui

2,0 in its neighbors. Since
there is no interfacial free energy associated with the mixing
of the two equilibrium phases of droplets there is no reason
for them to unmix; this is shown in Fig. 5(c).

For u0=0.27, inside region II of Fig. 1(where there are
lamellar phases), linear analysis shows again that the un-

stable fluctuations are of the formDui
1=Dui

2. In the dynam-
ics, alternating lamellae of a dense unmixed fluid and a fluid
rich in component 3 are very soon formed with a structure
that is full of disclinations and dislocations as in Fig. 6(a),
after 40 000 iterations. The subsequent evolution, after
80 000 iterations, is a complex mixture of annihilation of
defects and the unmixing of components 1 and 2 in the dense
lamellae[see Fig. 6(b)]. In this undirected deep quench, the
defects in the stripes pattern are pinned[9] and the phase
separation continues until the length of the stripes is the
same as the channels that the dense fluid makes in this dis-
ordered structure. This kinetics is very slow and in Fig. 6(c)
we can see the appearance of the pattern after 1.53106 it-
erations. We have convinced ourselves that this disordered
structure is close to a solution of the Euler-Lagrange equa-
tions within an error,10−10, and thus it is metastable. In
Fig. 7(a) the two time evolution ofV for this case is shown.
The appearance of the pattern shown in Fig. 6(c) is very
similar to that which Pomeau and Co-workers[11] classified
as labyrinths, but its structure factor lacks the long tail to-
ward long wavelengths which characterizes the labyrinthine
structures. This is shown in Fig. 7(b).

The unmixing inside the lamellae creates interfaces with a
linear tension and no dipolar forces to contrarrest an Ostwald
ripening inside them. To study this we have run simulations
with initial conditions with random noise whose amplitude is
larger along the(1,1) direction than in the perpendicular one
s1,−1d. Very soon lamellae along the(1,1) direction are
formed and the structure has very few defects. Again, after
the formation of the parallel lamellae, the dense stripes begin
to decompose. We have measured the second moment in the
direction (1,1) of the u1, u1 structure factor and found that
the growth of the lengthL of the droplets inside the lamellae
is consistent withL, t1/3 as in the Lifshitz-Slyozov universal
law but very soon finite size effects become important and
we need a larger sample to be sure of this exponent. The final
result, shown in Fig. 8, is a lamellar structure with liquids
rich in the 1, 2, and 3 components alternating with very few
interfaces of liquids rich in components 1 and 2 present. As
in the case of region I the kinetics induces an additional
ordering; the lamellae alternate in the form
1,3,2,3,1,3, . . . .

For u0=0.33 inside region III of Fig. 1 there are two hex-
agonal bubble phases in equilibrium. The backgrounds of
these two bubble phases are liquids,L1 andL2, rich in com-
ponents 1 and 2, respectively. The early time behavior shows
growing fluctuations withDui

1=Dui
2 so that a hexagonal

bubble phase withu1=u2=0.0003 forms in a sea of a non-
segregated phase withu1=u2=0.4967. This nonequilibrium
structure evolves eliminating defects, but after about 50 000
iterations the unstable dense fluid segregates forming a com-
plex structure. At later stages of the evolution after 2.5
3105 the underlaying lattice of bubbles is liquidlike hexago-
nal as shown in Fig. 9(a). In Fig. 9(b) the pair correlation
function gu3,u3 of the third species in the mixture is shown.
The two segregated liquids form interfaces with excess line
tension so that regions ofL1 andL2 nucleate in the presence
of the bubbles, the hexagonal lattice of bubbles is then dis-
placed to leave space to the nucleating domains, and the
result is that the number of defectsn decreases until the

FIG. 4. (a) Appearance of the pattern foru0=0.18 after 1.5
3106 iterations.(b) A Voronoi construction is shown for the con-
figuration shown in(a). The points marked by a dot have coordina-
tion z=6, those marked by circles havez=5, the circles with a dot
inside mark the position of unsegregated droplets, and the diamonds
are the positions of droplets surrounded by seven neighbors.
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liquids start to nucleate and then increases with time as
shown in Fig. 9(c).

As we increase the value ofu0 the density of bubbles
decreases leaving more space for them to move and foru0
=0.382, also inside region III, this motion is more dramatic
leading to new lamellar structures. Figure 10 shows typical
configurations after 30 000, 60 000, and 1 500 000 iterations.
Movies of this evolution have been made and it was ob-
served that as the two liquids segregate they form interfaces
with excess line tension. The domains grow in the typical
way, with regions of the same liquid coalescing and smaller
domains feeding the larger ones; in this process the bubbles
are dragged into the interface. Since the dynamics conserves
the overall densities of the three components, the number of
bubbles remains constant and the segregation continues until
the interface is completely saturated by bubbles. We seldom
see bubbles leaving the surface and entering the bulk of one
of the liquids which is the only way that the equilibrium
hexagonal phases could form. Then, the number of bubbles
determine the length of the interface and shield the two liq-
uids from each other. In the late time behavior, we see the
formation of a new lamellar structure, which has lost com-
pletely the original hexagonal symmetry that was present at
earlier times, as in Fig. 10(a); the lamellae are of liquidsL1
andL2 separated by the bubbles in a structure that resembles
a two-dimensional microemulsion with the bubbles taking
the role of a surfactant. In Fig. 10(c) this late time configu-
ration is shown(after 1.53106 iterations). We have mea-
sured the sizeR of the liquid domains locating the first zero
of the angle averaged correlation functionsgu1u1 and gu2u2;
the results are in Fig. 11, there we see, for a decade, a growth

FIG. 5. Properties of the dynamics foru0=0.18. (a) Log10

-log10 plot of the normalized number of defectsn (dotted line) and
the orientational orderf6 (circles; the dashed line is a guide to the
eye and has a slope of 1/4). In (b) Log10-log10 plot of the evolution
of the grand potential showing the two time behavior of the model.
(c) The distributions of distances is shown. The white portion of the
bars is the number of neighbors with unlikecolor while the black
and gray portions are the numbers with likecolor.

FIG. 6. Evolution of the pattern of lamellae foru0=0.27. (a)
After 40 000 iterations the dense regions are in black;(b) after
80 000 iterations where the dense lamellae begin to segregate.(c)
The appearance of the pattern after 1.53106 iterations is shown.
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law of the formR, t1/3, where the growth is controlled by
line tension, followed by a slowing down once the interfaces
betweenL1 andL2 begin to be saturated by bubbles.

It is interesting to confirm that the configuration in Fig.
10(c) is close to a metastable state. As before we have used

this state as the initial configuration in the iteration process
of the solution of Eq.(3) with condition (4). The resulting
stationary state(with an errorø10−10) is indistinguishable
from that shown in Fig. 10(c).

As in all regions of the symmetric part of the composition
triangle we find that in region III there are many metastable
states; the values ofV for these stationary states are in the
range −2.0633104øVø−2.0483104, the lowest value cor-
responds to a hexagonal crystal of bubbles, in a single back-
ground ofL1 or L2, while the largest one corresponds to a
metastable uniform fluid.

For u0=0.45 in the four-phase region, and close to the
L1−L2 coexistence region, linear analysis shows that the un-
stable fluctuations are of the formDui

1=−Dui
2 and the two

liquids immediately separate. At early times the interface is
very long. Since part of component 3 is absorbed in this
interface, the bulk phases that condense have less of compo-
nent 3 than those at the four-phase equilibrium. In Fig. 12 the
evolution of the pattern that is forming is shown. As the
structure ripens and the interface is reduced, the bulk phases
acquire their equilibrium values, and the excess of compo-
nent 3 goes to the interface where bubbles start to form. It is
interesting to see that a bubble at the interface induces the

FIG. 7. (a) Log10-log10 evolution of the grand potential showing
the two time behavior of the model foru0=0.27.(b) The normalized
and angle averaged structure factor of the configuration shown in
Fig. 6(c).

FIG. 8. Directed quench for u0=0.27 after 250 000
iterations.

FIG. 9. Some properties of the dynamics foru0=0.33. (a) Ap-
pearance of the pattern after 2.53105 iterations.(b) The gu3,u3 cor-
relation function that shows that the underlaying structure of
bubbles has hexagonal symmetry.(c) Evolution of the normalized
number of defectsn.
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formation of neighboring bubbles developing necklaces
along the interface. The average size of the domains that
were growing at a rate in accord to the Lifshitz-Slyozov law
is therefore reduced. The formation of the necklaces is very
slow and to have an idea of the final state of the system we
have used the configuration shown in Fig. 12(b) into the
Euler-Lagrange equations as the initial iteration. The result-
ing pattern is shown in Fig. 12(c). There we see that the

interface has a complex shape, suggesting that there is no
cost in free energy for its formation.

IV. CONCLUSIONS

In summary, we have presented results for the evolution
of a model characterized by short-ranged attractive interac-
tions and long-ranged repulsions with two order parameters.
We have concentrated on a very symmetric model where the
phase diagram has a rich structure with many equilibrium
phases. In addition, the model presents innumerable meta-
stable phases and the dynamics often ends up in one of these
vitreous states. Moreover, in some regions of the phase dia-
gram, the expected behavior of elimination of defects of the
hexagon lattice is disrupted by the segregation of the under-
lying liquid and the system ends up in new unexpected meta-
stable modulated states where the anticipated hexagonal or-
der is destroyed. We have generalized the model to include
two-dimensional Coulomb interactions instead of dipolar in-
teractions. We also have constructed a generalization of the
Swift-Hohemberg model free energy with two active order
parameters and found the same behavior when the order pa-
rameters are conserved, and believe that the properties that
we found are those of a wide range of models. I expect that
these findings will encourage experiments in mixtures of po-
lar molecules in the water-air interface and related problems.
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FIG. 11. Evolution of the sizeR of the liquid domains measured
by the first zero of the angle averaged correlation functionsgu1u1

andgu2u2. In this log10-log10 plot, the dashed line is a guide to the
eye and has a slope of 1/3.

FIG. 12. Evolution of the pattern foru0=0.45.(a) After 210 000
iterations,(b) after 830 000 iterations, and(c) stationary solution of
the Euler-Lagrange equations.

FIG. 10. Evolution of the system foru0=0.382.(a) After 30 000
iterations, (b) after 60 000 time steps, and(c) after 1 500 000
iterations.
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