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Dynamics of growth in a three-component mixture with competing interactions
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We study numerically the dynamics, in two dimensions, of phase separation in ternary mixtures with dipolar

interactions which lead to the formation of modulated phases. We distinguish three different modulated phases:

a hexagonal phase of droplets, a lamellar phase, and a hexagonal phase of bubbles. Inside the crystal structures
an additional phase separation occurs “coloring” the texture. The dynamics in the droplet phase mixes the two
kinds of droplets of different composition. The lamellar phase does not evolve toward parallel lamellae, and the
phase separation inside the channels proceeds until they reach a grain boundary. The hexagonal bubble phase
is never formed due to the phase separation that forms an interface of bubbles which blocks the contact
between the two phases. In its place we find an unsuspected lamellar phase.
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. INTRODUCTION has a minimum wherReq:(e35/4)[e"’ﬁ2] so that, in this
There has been an intense research activity in the prol:2Se; domain coarsening is suppressed by the dipolar repul-
lems that arise when studying systems subjected to a rapflon- From a different point of view, Andelm4#] and Sagui
quench[1]. Interest has been focused on problems that inf’lnd Desai[8] have_ an_alyzed a free-energy density with
hort-ranged attractive interactions and long-ranged nonlocal

volve only one o_rd_er parameter. When the orde.r parameter | epulsive interactions. Solving the Euler-Lagrange equations
scalar we can distinguish two types of systems: simple fluids

and fluids with competing interactions. In simple fluids, an. restricted symmetriegamellar and hexagonathey ob-

initially homogeneous binary mixture that is quenched into atained a phase diagram which contains five different phases:
y 9 y d uniform gas phase, a droplet hexagonal phase, a lamellar

) . a
two-phase region phase separates starting to form droplets BLase a bubble hexagonal phase, and a dense liquid uniform
phase at different concentrations of polar molecules. Sagui

the minority phase, which grow in size and number until the
volume fraction occupied by the droplets attains its equnlb—and Desai studied the time evolution of these systems

rium value. In the late stages of the separation the large S . .
droplets grow at the expense of the smaller ones. This Osfr—hrough Langevin simulations when the system is quenched,

wald ripening follows a universal growth law driven by sur- nto the droplet phase, and found that after an initial shape
face tension, Lifshitz and Slyozoj2] have developed the transition into the hexagonal phase the system forms modu-

phenomenology of this growth in which the average domairIated patterns broken up by topological defects which anneal

. A . . away as the system orders. In near critical quenches and in a
sizeR scales with time asR=At"3; this has been confirmed ~
experimentally in two-dimensional systefigs4]. Even when closely related system, Boyer and Vifig§ have shown that

i . transient lamellar configurations do not achieve long-ranged
the system is more complex and contains three component

with the possibility of three-phase equilibrium, droplets of Stientational order but rather evolve into glassy configura-

two different phases arow. when auenched from a unifor tions with very slow dynamics. Here we present the results
hase whichp at Iatg tinlnes follgw the Lifshitz-SI ozovmfor the time evolution of a model whose free energy contains
P ' y two coupled order parameters with long-ranged interaction

growth law[5]. ; :
When in addition to the surface tension, due to Short_terms that involve only one order parameter. The result is a

ranged attractive interactions, there are also long-ranged rc_ompetition between modulation and phase separation due to
ged a ) T 9-Tanged Ies cess free energy at interfaces with line tension that is not
pulsive interactions presenias is the case of Langmuir

monolayers of polar moleculgsundulating phases become compensated by long-ranged repulsive interactions, and the

stabilized[6]. The problem has been approached from tWOformatlon of new glassy metastable states that prevent the

different view points. McConnell7] studied single isolated system from achieving equilibrium. There are several regions

. L of interest in the phase diagram of the model and we present
domains and has developed an effective interface free energy ¢ 11 account of its dynamical properties as we keep the

for molecular f_|Ims_ in the water-air |r_1terfac_e Wher_e the Iong'temperature of the quench constant and vary the concentra-
ranged repulsive interactions are dipolar interactions among . " e initial state. In Sec. | we present the model, its

;Tjerf:cr:agI:nznc]arl)ggr?g“t;e?]rr?;e\?vﬂiish. thigrigsin?,;ggncggﬁ;gs hase diagram, and the linear analysis to find the regions of
stability. In Sec. Il we present our numerical results for the

circular domain of radiu& has the form time evolution of the model in several regions of the phase

25 diagram and in Sec. Ill we present our concluding remarks.
F=27RA| In— +\ |, (1)
4R Il. THE MODEL
wherewv is the dipole density in the monolayé,is the line Our model is a three-component lattice model with both

tension, ands is a short distance cutoff length. Equati¢k)  short-ranged and long-ranged interactions in the mean-field
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approximation. Let)* be the occupation number of species
at sitei, then the free energy is:

F= E KT u® + % 2 Ver(r ufuf, 2)
I,a ij,a,B

where T is the temperature an\ia'ﬁ(ri,j) is the interaction
potential. We consider a fully occupied lattice so that
>3_, u*=1. The interaction potential is attractive for nearest-
neighbor sites, zero for second nearest-neighbor sites, and
repulsive for third nearest-neighbor ones, wMftA(r; ;)
~v“vﬁ/rf» which corresponds to dipolar interactions with
dipolar momenty* for speciesa. Since the lattice is fully
occupied there are three independent interaction parameters
for the short-ranged interactions, and we use the notation in FIG. 1. Phase diagram for the three-component mixture. Italic

Ref.[10] for them. For a square lattice this interaction termlettersa, ¢, d, ande mark immiscibility gaps for first-order phase
is transitions, the poinb marks a second-order phase transition where

the droplet phases segregate. In region | the stable phases are hex-

1 agonal droplet phases with a general appearance shown ininset . In
Z% auizuj?‘ + buiaujl + Cuilujz region Il there are lamellar phases as in the inset Il. In region IIl we
' obtain two-phase equilibria between two hexagonal phases with an
where the sum oveyris over the four first neighbors of We  interface of bubbles as seen in the inset marked by lll. In the insets
also assuma+b+c=1 which sets the temperature and dipo- White regions are rich in componenj and black and gray regions
lar moments scale. In addition, we usea, yl:V2, and 13 are rich in the symmetric componenig and u,. Points represent
=0 so that the mixture is symmetric. This leaves us withconcentrationsut=u?=0.18, ut=u?=0.27, u'=u’=0.33, u'=u?
three dimensionless parameters: the temperdrehe in-  =0-382, andi'=u?=0.45 where we have studied the dynamics.
teraction parametear, and the dipolar moment In this work
we choosec=0.285,kT=0.08, andr=0.2. At this tempera- culating the grand potential for each one of them, we find
ture the mixture shows, wher=0, a triple point for a wide that those with low concentrations at or u? are the most
range of concentrations in the composition trian@le With ~ Stable ones. We then calculate the grand poteifliads a
»#0 this grand potential describes a Langmuir monolayefunction of u'=u? for different symmetries and locate the
with two different segregating polar molecules in the air-first-order phase transitions between phases of unlike sym-
water interface. metries. In Fig. 1 the resulting phase diagram is shown. At

The Euler-Lagrange equation&k/du®=u®, for the two small conqentra_tions of polgr moIecuIe;, at the top of the
independent occupation numbars and u? may be cast in  concentration triangle, we find only uniform states. As we

the mean-field form increase the chemical potentials of species 1 and 2 we find a
first-order phase transition where the stable state has hexago-
N e (=T nal symmetry with droplets rich in polar molecules with
U = 2 ' 3) :uiz. The region of immiscibility in the composition triangle
1+ o (1Pt generated by this first-order transition is marked by the letter
p=1 ain the figure. As we continue increasing and u? we find

a point(point b in the figurg where there is a second-order
phase transition. The order parameter for this transition is
uil—ui2 and the composition of the droplets in these hexago-
al phases is rich in either the first or the second component
f the mixture. Increasing' and u? we enter into the region
marked by | in the figure. There we have hexagonal phases
f colored droplets. Since the background regions for both
ypes of droplets are the same, there is no excess free energy
for mixing the two types of droplets, and region | is a con-
tinuous region where the number of droplets of different
types depend on concentration. On the right and the left sides

where " is the functional derivative of the interaction term
in F that is calculated by means of Fourier transforms afid
is the chemical potential for species The Euler-Lagrange
equations were solved by successive iterations with a glob
error <1078 and u'=u? (Where we expect multiple phase
equilibrig) starting with different initial configurations with
uniform, lamellar, and hexagonal symmetries in a lattice o
size 106. We also find it convenient to minimize the grand
potential Q=F-3; u'ul-u?u? subject to constant global
compositionN* and use

e IKT of this region we find only droplets of ore®lor which are in
Ne= > ut=er KTy 5 (4)  equilibrium with each other. At larger values pf and 2
i [ 143 e_(l,ls_ﬂﬁ),kT we find a first-order phase transition into a region of lamellar

phases. The lettar in the figure marks the gap in composi-
tion at this first-order transition. This is followed by a region
to adjust the chemical potentials at each step of the iteratiofregion Il of Fig. 1) where stripes rich in component(2)

in Eq. (3). The model has many minima and with different alternate with stripes rich in component 3; again the stripes
concentrations and with the same chemical potentials. Cakan alternate in any order with lamellae rich in component 3

p=1
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FIG. 3. Evolution of the system fouy=0.18, inside region I,
after (@) 75 000 andb) 150 000 iterations. The tones of gray rep-
resent values of the parameter &/— 0.50%.

=Au? at k;=(0,1.09 for values of u in the range

FIG. 2. The two most unstable eigenvalues of the stability ma.0.11<<u<0.38 and to fluctuations witt\u'=-Au® at k,
trix as functions of concentration in the symmetric region of the=(0,0) for 0.28<u<0.5.

phase diagram.

always between lamellae of component 1 or 2. As in the

previous case the states at the right and the left sides of
region Il are lamellar phases of component 1 in 3 or compo-
nent 2 in 3, which due to symmetry are in equilibrium. At a
larger value ofu'=u? we find a first-order phase transition
into a region of hexagonal phases, with an immiscible ga
marked by the letted. At the right and the left sides of

region Il of Fig. 1, there is equilibrium between two bubble
hexagonal phases. In one of them the background liquid i

The time evolution of the system, after a quench from a
uniform phase, is described by the equations
du’ N 80
D (7)
dt 5 oyt auf
for a system with conserved order parameter. In E&ythe
sum overj is over the first neighbors df Linear analysis

Rhows that fluctuations of the fordu=e “'¢k" are solutions

of the kinetic equations witlw=k?w;, wherew, are the two
Seigenvalues of the stability matrix in Eg&) and (6).

rich in component 1 while in the other the bubbles reside in

a sea rich in component 2. To see the nature of the interface
formed when we put these two phases in contact, we solved
Eq. (3) with condition (4). The complex interface made of

IIl. NUMERICAL RESULTS

When studying the dynamics of the system, we used sev-

bubbles is shown in the inset Il of Fig. 1. Note that the formeral initial conditions withui*=uy+Au, whereAu;" is a fluc-

of the interface is not circular or straight suggesting thatuation with zero mean, the average compositigifior com-
there is no excess free energy associated with it. Finallyponents 1 and 2 being the same. The evolution equations
regione of the diagram is the immiscibility gap that leads to Were solved by a simple Euler method with a time sfgp
region IV where we find two-phase equilibria between two=0.006.

uniform phases; one rich in component 1 and the other rich Figure 3 shows typical configurations after 75000 and

in component 2 at the right and the left sides of region IV. 150 000 iterations fou,=0.18, inside region I. Linear analy-
It is interesting to analyze the behavior of the stability Sis shows that the unstable fluctuations are concentration

matrix near uniform states witlf' = u?=u; its eigenvalues for ~ fluctuations withAu'=Au?. Following the quench the system

a lattice vectok are of the form

w1

and

kT

kKT kT
=—+ 1- +VE(k) + VIA(k)

wp =" * VA (K) = VEAK).

w; corresponds to fluctuations withu'=Au? and has a
minimum at a wave vectdt;=(0,1.07, andw, corresponds
to fluctuations withAu'=-Au? with a minimum at a wave
vectork,=(0,0). In Fig. 2w, andw, at the valuek, andk,
respectively, are plotted as functionswfThere we see that
uniform states become unstable to fluctuations watir

©)

(6)

forms a complex pattern of interconnected domains. After
around 30 000 iterations, the system already shows a short-
ranged liquidlike hexagonal structure of dense droplets with
ut=u? and ul+u?=0.9. At this density, fluctuations with
Aul=-Au? become unstable and the droplets start to decom-
pose into droplets rich in component 1 or 2. Since the line
tension between the dense droplets and the gas is larger than
that of the decomposed droplets win[‘w: uiz, these grow in
size. In Fig. 4a) the appearance of the pattern after 1.5
X 10 iterations is shown. We have analyzed the evolution of
the underlaying hexagonal structure using Voronoi and trian-
gular representations and followed the evolution of the num-
ber of sitesn,, with coordinationz. We find that, very soon,
there are only sites witk=5,6, and 7. Thalefects withz

=5 and 7 pair and evolve very much in the same way as
Sagui and Desdi8] have described; through, and T, pro-
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) @ _ (b) . stable fluctuations are of the fortku!=Au?. In the dynam-
%5 T HY SRR NPT N S, ics, alternating lamellae of a dense unmixed fluid and a fluid

' e a009%eC AT PR 5 AR rich in component 3 are very soon formed with a structure
00008 '..o. o a0 o that is full of disclinations and dislocations as in Figag
D A 8 epies P after 40000 iterations. The subsequent evolution, after
Ap T '.. AL e e a0y 80 000 iterations, is a complex mixture of annihilation of
*e%05%0 A A I S MY defects and the unmixing of components 1 and 2 in the dense
B - '. e . ..' oo 00 % lamellae[see Fig. @)]. In this undirected deep quench, the
sete > = '." (X .'.°-4°_ L TN defects in the stripes pattern are pinff&l and the phase

o Yy ..' B .: ; “E g : e separation continues until the length of the stripes is the
el .0 o. .' . ...0‘ o0 T o i _'o same as the channels that the dense fluid makes in this dis-

ordered structure. This kinetics is very slow and in Fi@)6
FIG. 4. (8 Appearance of the pattern far,=0.18 after 1.5 W€ can see the appearance of the pattern aftex 105 it-

X 10f iterations.(b) A Voronoi construction is shown for the con- €rations. We have convinced ourselves that this disordered

figuration shown in@). The points marked by a dot have coordina- Structure is close to a solution of the Euler-Lagrange equa-

tion z=6, those marked by circles haze5, the circles with a dot  1iONS within an error<10™*°, and thus it is metastable. In

inside mark the position of unsegregated droplets, and the diamondgd- 7(&) the two time evolution of) for this case is shown.

are the positions of droplets surrounded by seven neighbors. ~ The appearance of the pattern shown in Figr) 6s very
similar to that which Pomeau and Co-workéid] classified

cesses forming boundaries between the different hexagonak labyrinths, but its structure factor lacks the long tail to-
grains in this polcrystalline structure. There is however award long wavelengths which characterizes the labyrinthine
difference; the average number (ns+ny)/(ns+ng+n;), of  structures. This is shown in Fig().

defects decreases with a growth law that seems to be slower The unmixing inside the lamellae creates interfaces with a
than that found by Sagui and Desai andt? with 8= %. We linear tension and no dipolar forces to contrarrest an Ostwald
attribute this behavior to the fact that not all the dropletsripening inside them. To study this we have run simulations
segregate; at very late times we still see droplets with conwith initial conditions with random noise whose amplitude is
centrationsu'=u?, and since these are smaller, they tend tojarger along the1,1) direction than in the perpendicular one
pin defects with coordination=5. In Flg 4b) this bEha..ViOI' (1’_1) Very soon lamellae a|0ng th@_’l) direction are

is shown. After 1.5¢10° the structure is nearly stationary formeqd and the structure has very few defects. Again, after
gnd \{vhen we use th.e state shown in Fih)4s the initial ¢ tormation of the parallel lamellae, the dense stripes begin
iteration for the solution of the Euler-Lagrange equaiiBn 1 jecompose. We have measured the second moment in the
the resulting solution is very close to the initial Conf'gura'direction(l,l) of the U, u® structure factor and found that

tion. There are three causes for the freezing of the liquidlik S
state: first there are finite size effects where the periodi he growth of the length. of the droplets inside the lamellae

boundary conditions do not match the wavelength of th(js consistent Wim‘w_tl/_s as _in the Lifshitz-SIyozqv universal
structure and impose strain in the lattice, second the quencA" Put very soon finite size effects become important and
temperature is very deep, and third the unsegregated droplefé€ néed a larger sample to be sure of this exponent. The final
pin defects with coordination=5. At early times the system result, shown in Fig. 8, is a lamellar structure with liquids
orders both positionally and orientationally and in Figa)s fich in the 1, 2, and 3 components alternating with very few
we can see the measured time ev0|umameraged over four interfaces of ||C]U|dS rich in components 1 and 2 present. As
rung of the number of defects and the orientational orderin the case of region I the kinetics induces an additional
parametefs=|=, =, €53 a(k, 6)|, whereS;s 3(k, 0) is the ~ ordering;  the lamellae alternate in  the form
normalized structure factor of the third component of thel,3,2,3,1,3,....
mixture. Its evolution is also jammed by finite size effects Foruy=0.33 inside region Il of Fig. 1 there are two hex-
and the pinning of defects so that the structure is still liquid-agonal bubble phases in equilibrium. The backgrounds of
like. In Fig. 5b), clearly the two-step evolution of the system these two bubble phases are liquitlg,andL,, rich in com-
by plotting the behavior of the time evolution of the grand ponents 1 and 2, respectively. The early time behavior shows
potential is seen; here the first rise in thédf) curve cor-  growing fluctuations withAu'=Au? so that a hexagonal
responds to the formation of nonsegregated droplets whilbubble phase witlu'=u?=0.0003 forms in a sea of a non-
the second corresponds to their segregation. There is a puredggregated phase witlt=u?=0.4967. This nonequilibrium
kinetic effect in the structure that induces an additional cor-structure evolves eliminating defects, but after about 50 000
relation; droplets rich in component 1 are surrounded, orterations the unstable dense fluid segregates forming a com-
average, by four droplets rich in component 2 and two dropplex structure. At later stages of the evolution after 2.5
lets rich in component 1 because growing droplets feed fromx 10° the underlaying lattice of bubbles is liquidlike hexago-
its neighbors and a growing fluctuation witf—u?>0 in-  nal as shown in Fig. @. In Fig. 9b) the pair correlation
duces fluctuations withi'~u?<0 in its neighbors. Since function g, of the third species in the mixture is shown.
there is no interfacial free energy associated with the mixingrhe two segregated liquids form interfaces with excess line
of the two equilibrium phases of droplets there is no reasonension so that regions &f; andL, nucleate in the presence
for them to unmix; this is shown in Fig.(&). of the bubbles, the hexagonal lattice of bubbles is then dis-
For uy=0.27, inside region Il of Fig. Iwhere there are placed to leave space to the nucleating domains, and the
lamellar phases linear analysis shows again that the un-result is that the number of defectsdecreases until the
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FIG. 6. Evolution of the pattern of lamellae fop=0.27. (a)
After 40 000 iterations the dense regions are in blatk; after
80 000 iterations where the dense lamellae begin to segregate.
The appearance of the pattern after 2 B iterations is shown.

liquids start to nucleate and then increases with time as
shown in Fig. 9c).

As we increase the value af, the density of bubbles
decreases leaving more space for them to move andgfor
=0.382, also inside region IllI, this motion is more dramatic
leading to new lamellar structures. Figure 10 shows typical
configurations after 30 000, 60 000, and 1 500 000 iterations.
Movies of this evolution have been made and it was ob-
served that as the two liquids segregate they form interfaces
with excess line tension. The domains grow in the typical
way, with regions of the same liquid coalescing and smaller
domains feeding the larger ones; in this process the bubbles
are dragged into the interface. Since the dynamics conserves
the overall densities of the three components, the number of
bubbles remains constant and the segregation continues until
the interface is completely saturated by bubbles. We seldom
see bubbles leaving the surface and entering the bulk of one
of the liquids which is the only way that the equilibrium
hexagonal phases could form. Then, the number of bubbles
determine the length of the interface and shield the two lig-
uids from each other. In the late time behavior, we see the
formation of a new lamellar structure, which has lost com-
pletely the original hexagonal symmetry that was present at
earlier times, as in Fig. 18); the lamellae are of liquids,
andL, separated by the bubbles in a structure that resembles

the orientational ordefs (circles; the dashed line is a guide to the & two-dimensional microemulsion with the bubbles taking

eye and has a slope of 1)/4n (b) Log;q-l0g;¢ plot of the evolution

the role of a surfactant. In Fig. 1€ this late time configu-

of the grand potential showing the two time behavior of the modelration is shown(after 1.5< 10° iterationy. We have mea-
(¢) The distributions of distances is shown. The white portion of thesured the siz& of the liquid domains locating the first zero

bars is the number of neighbors with unlikelor while the black

and gray portions are the numbers with ligelor.

of the angle averaged correlation functiogmg,: and g,2.2;
the results are in Fig. 11, there we see, for a decade, a growth

061504-5



C. VAREA PHYSICAL REVIEW E 69, 061504(2004

(@) (b)
4.28 T
4.27F E
g
D
o
4.26fF b
4250 1 3 4 5 6 &
log(iter) or
(b)

0.6

0.02} | = 0sf 4
0.4 ]
iR 3
3 1] e T
» 03f - ERe =
0.01}f 1 - P .
g

02 i ; i i

0 0.5 1 L5 2 25
5
10~ iter
0.5 1
k

FIG. 9. Some properties of the dynamics fg=0.33.(a) Ap-
pearance of the pattern after Xa0° iterations.(b) The g3 cor-
relation function that shows that the underlaying structure of

FIG. 7. (8) Logs¢-log; o evolution of the grand potential showing bubbles has hexagonal symmetgs) Evolution of the normalized
the two time behavior of the model fap=0.27.(b) The normalized  number of defects.
and angle averaged structure factor of the configuration shown in

Fig. 6c). this state as the initial configuration in the iteration process
U3 _ of the solution of Eq(3) with condition (4). The resulting
law of the formR~t"*, where the growth is controlled by giationary statewith an error<107%9) is indistinguishable
line tension, followed by a slowing down once the interfacestom that shown in Fig. 1@).

betw_eerlLl and_Lz begin to_ be saturated by_bubb!eS-_ _ As in all regions of the symmetric part of the composition

It is interesting to confirm that the configuration in Fig. yiangle we find that in region Il there are many metastable
10(c) is close to a metastable state. As before we have usegyies: the values d for these stationary states are in the
range —2.06X 10°<() <-2.048x 10%, the lowest value cor-
responds to a hexagonal crystal of bubbles, in a single back-
ground ofL; or L,, while the largest one corresponds to a
metastable uniform fluid.

For ug=0.45 in the four-phase region, and close to the
L,—L, coexistence region, linear analysis shows that the un-
stable fluctuations are of the fortau!=-Au? and the two
liquids immediately separate. At early times the interface is
very long. Since part of component 3 is absorbed in this
interface, the bulk phases that condense have less of compo-
nent 3 than those at the four-phase equilibrium. In Fig. 12 the
evolution of the pattern that is forming is shown. As the
structure ripens and the interface is reduced, the bulk phases
acquire their equilibrium values, and the excess of compo-

FIG. 8. Directed quench foruy=0.27 after 250000 nent 3 goes to the interface where bubbles start to form. It is
iterations. interesting to see that a bubble at the interface induces the
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(b)

~ FIG. 10. Evolution of the system faiy=0.382.(a) After 30 000 FIG. 12. Evolution of the pattern far,=0.45.(a) After 210 000
iterations, (b) after 60 000 time steps, an() after 1500000 jierations,(b) after 830 000 iterations, and) stationary solution of
iterations. the Euler-Lagrange equations.

formation of neighboring bubbles developing necklaces terf h | h tina that th .
along the interface. The average size of the domains thap erface has a compiex shape, suggesting that there 1S no

were growing at a rate in accord to the Lifshitz-Slyozov IawCOSt in free energy for its formation.
is therefore reduced. The formation of the necklaces is very
slow and to have an idea of the final state of the system we IV. CONCLUSIONS

have used the configuration shown in Fig.(2into the In summary, we have presented results for the evolution
Euler-Lagrange equations as the initial iteration. The resultyf 5 model characterized by short-ranged attractive interac-
ing pattern is shown in Fig. 12). There we see that the ions and long-ranged repulsions with two order parameters.
We have concentrated on a very symmetric model where the
phase diagram has a rich structure with many equilibrium
phases. In addition, the model presents innumerable meta-
stable phases and the dynamics often ends up in one of these
vitreous states. Moreover, in some regions of the phase dia-
gram, the expected behavior of elimination of defects of the
hexagon lattice is disrupted by the segregation of the under-
lying liquid and the system ends up in new unexpected meta-
stable modulated states where the anticipated hexagonal or-
der is destroyed. We have generalized the model to include
two-dimensional Coulomb interactions instead of dipolar in-
teractions. We also have constructed a generalization of the
Swift-Hohemberg model free energy with two active order
parameters and found the same behavior when the order pa-
rameters are conserved, and believe that the properties that
we found are those of a wide range of models. | expect that
. these findings will encourage experiments in mixtures of po-

log(iter) 6 lar molecules in the water-air interface and related problems.
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FIG. 11. Evolution of the siz® of the liquid domains measured ACKNOWLEDGMENTS
by the first zero of the angle averaged correlation functigpg
andggz. In this logy-log;, plot, the dashed line is a guide to the | acknowledge support from the CONACyYT Grant No.
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